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Section 1. Basic principle based on coupled-mode theory  

Coupled-mode theory (CMT) can be used to describe the interaction between an 

optical resonator and m ports, hence, it can also describe the responses between external 

fields and optical modes supported by a PhC cavity. We consider an incidence with a 

certain in-plane 𝑘|| , the scattering process can be expressed as: 

 |𝐸𝑜𝑢𝑡⟩ = [
𝑠𝑢

𝑠𝑑
]
−

= S [
𝑠𝑢

𝑠𝑑
]
+

= S|𝐸𝑖𝑛⟩ (S1) 

Here, 𝑠𝑢± (𝑠𝑑±) represent the incoming/outgoing beams of the upper (down) side 

of the PhC resonator, S  is referred to the scattering matrix. Now we consider the 

radiative modes of the PhC slab with 𝐶4𝑣  symmetry. Note that the states of 

polarization (SOPs) of the modes around bound states in the continuum (BICs) are 

nearly linearly polarized, the CMT incorporating 𝑘|| − 𝑟|| can be expressed as: 

 
𝑑𝐴

𝑑𝒓||
= (𝑖𝑘0 − 𝛼𝑣𝑔

∑𝛾𝑚) 𝐴 + 𝛼𝑣𝑔
𝐾𝑇|𝑠+⟩, 𝛼𝑣𝑔

= 𝑠𝑔𝑛(𝑣𝑔) 

 |𝑠−⟩ = 𝐶|𝑠+⟩ + 𝐷𝐴 = 𝕊|𝑠+⟩.  (S2) 

Here, 𝐴 represents the field amplitude of the resonance, and 𝒓|| is the in-plane 

position, whose direction is parallel to 𝑘|| . The parameter 𝛼𝑣𝑔
  denotes the group 

velocity factor of the radiative mode, and 𝛾𝑚 refers to the radiation loss of m-th port. 

Additionally, 𝑘0  is the wave vector of the resonant radiative mode along the same 

direction as 𝑘||. The matrix 𝐶 is the generalized background scattering matrix, and 𝐾, 

𝐷 are the coupling coefficients between the resonance and the ingoing and outgoing 

plane waves. By considering the resonance of in-plane 𝑘||, we can solve Equation S2 

for the scattering matrix S: 

 S = 𝐶 +
𝐷𝐾𝑇

𝑖𝛼𝑣𝑔(|𝑘|||−𝑘0)+∑𝛾𝑚
 (S3) 

In our work, we focus on the incidence along the Γ-X direction. In this direction, 

s/p-polarization corresponds to y/x-polarization, the SOPs of the radiative modes are 

either x-polarized or y-polarized due to mirror symmetry. Now we assume that the 

SOPs are x-polarized, as the conclusions remains the same for the y-polarized case. 

Under the x-y polarization basis, these parameters can be expressed as: 



 |𝑠+⟩ =

[
 
 
 
 
𝐸𝑢

𝑥

𝐸𝑑
𝑥

𝐸𝑢
𝑦

𝐸𝑑
𝑦
]
 
 
 
 

+

, |𝑠−⟩ =

[
 
 
 
 
𝐸𝑢

𝑥

𝐸𝑑
𝑥

𝐸𝑢
𝑦

𝐸𝑑
𝑦
]
 
 
 
 

−

, 

 𝐶 = [

𝑟𝑥 𝑡𝑥
𝑡𝑥 𝑟𝑥

0 0
0 0

0 0
0 0

𝑟𝑦 𝑡𝑦
𝑡𝑦 𝑟𝑦

] , 𝐾 = [

𝑘𝑥

𝛼𝑧𝑘𝑥

0
0

] , 𝐷 = [

𝑑𝑥

𝛼𝑧𝑑𝑥

0
0

]. (S4) 

Here, 𝑟𝑥 /𝑟𝑦  and 𝑡𝑥 /𝑡𝑦  represent the background reflection and transmission 

coefficients for x/y polarization. The parameter 𝛼𝑧 is a parity number that links the 

upward and the downward radiation due to the sample-plane mirror symmetry. (𝛼𝑧 = 

±1, +1 and −1 correspond to even and odd symmetry, respectively). Considering the 

conditions of energy conservation and the space-reversal process condition of the 

system, we obtain constraints on the scattering matrix and coupling coefficients in 

Equation S2 as: 

 𝐷†𝐷 = 2∑𝛾𝑚, 𝐾 = 𝐷, 𝐶𝐷∗ = −𝐷. (S5) 

Here, ∑𝛾𝑚 = 𝛾𝑢
𝑥 + 𝛾𝑑

𝑥 = 2𝛾. And using equation S5, we obtain: 

 |𝑑𝑦| = √2𝛾, (𝑟𝑥 + 𝛼𝑧𝑡𝑥)𝑑𝑥
∗ = −𝑑𝑥. (S6) 

Now we consider the incidence only from the upper side, that is, |𝑠+⟩ =

[𝐸𝑢
𝑥 0 𝐸𝑢

𝑦 0]+
𝑇 , using Equations S3, S5 and S6, the reflection matrix ℝ can be 

written as: 

 |𝑟⟩ = [
𝐸𝑢

𝑥

𝐸𝑢
𝑦]

−

= ℝ[
𝐸𝑢

𝑥

𝐸𝑢
𝑦]

+

 

 R = [
𝑟𝑥 +

𝑑𝑥
2

𝑖𝛼𝑣𝑔(|𝑘|||−𝑘0)+2𝛾
0

0 𝑟𝑦

]  (S7) 

In our design, to excite the Γ-BIC mode, the incidence is nearly normal. Under 

this condition, we have the approximation 𝑟𝑥 = 𝑟𝑦 = |𝑟|𝑒𝑖𝜑𝑟, 𝑡𝑥 = 𝑡𝑦 = |𝑡|𝑒𝑖𝜑𝑡. The 

reflection matrix R can then be further expressed as: 

 R = [
−

𝛼𝑣𝑔|𝑟|(|𝑘|||−𝑘0)+2𝛼𝑧𝛾|𝑡|

𝑖𝛼𝑣𝑔(|𝑘|||−𝑘0)+2𝛾
𝑒𝑖𝜑𝑡 0

0 |𝑟|𝑒𝑖𝜑𝑟

] = [
𝑟𝑥𝑥 0
0 𝑟𝑦𝑦

], (S8) 

 𝑅𝑥𝑥 = |𝑟𝑥𝑥|
2 =

[𝛼𝑣𝑔 |𝑟|(|𝑘|||−𝑘0)+2𝛼𝑧𝛾|𝑡|]2

4𝛾2+(|𝑘|||−𝑘0)
2 . (S9) 

Here, 𝑅𝑥𝑥 represents the reflectance under x-polarized incidence. Based on the 

assumption that the SOP of the resonant mode is y-polarized, we can generalize the 



results to SOPs with an arbitrary orientation. To achieve this, we select an orientation 

with an azimuthal angle 𝜃 as the 𝑥′ direction, defining a new coordinate system 𝑥 ′̂ −

𝑦 ′̂. Using the concept of coordinate basis rotation, the reflection matrix R(𝜃) in this 

direction can be represented as R(𝜃) = 𝑅−1(𝜃) ⋅ R ⋅ 𝑅(𝜃), where the rotation matrix 

is defined as: 

 𝑅(𝜃) = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]. (S10) 

Next, we consider the condition under the left circularly polarized (LCP) and right 

circularly polarized (RCP) basis. We define the x-polarized and y-polarized unit vectors 

as |𝑋⟩ = (1, 0)𝑇 , |𝑌⟩ = (0, 1)𝑇, the LCP and RCP unit vectors can then be defined as 

|𝐿⟩ =
1

√2
(1, 𝑖)𝑇 and |𝑅⟩ =

1

√2
(1, −𝑖)𝑇. Notice that the definitions of LCP and RCP 

are consistent with those in which the incident propagation direction 𝒌 is chosen as 

the 𝑧̂ direction of the right-handed coordinate system. The transformation matrix 𝑇 

that converts the linearly polarized basis (X, Y) to the helical basis (L, R) can be 

expressed as: 

 𝑇 =
1

√2
[
1 1
−𝑖 𝑖

]. (S11) 

Then the reflection matrix S can be written as: 

S = 𝑇−1R(𝜃)𝑇 = 𝑇−1𝑅−1(𝜃) ⋅ R ⋅ 𝑅(𝜃)𝑇 

=
1

2
[

𝑟𝑥𝑥 + 𝑟𝑦𝑦 (𝑟𝑥𝑥 − 𝑟𝑦𝑦)𝑒𝑖2𝜃

(𝑟𝑥𝑥 − 𝑟𝑦𝑦)𝑒−𝑖2𝜃 𝑟𝑥𝑥 + 𝑟𝑦𝑦

] 

 = [
𝑟𝑙𝑙 𝑟𝑙𝑟𝑒

𝑖2𝜃

𝑟𝑟𝑙𝑒
−𝑖2𝜃 𝑟𝑟𝑟

]. (S12) 

For the helical basis, the LCP and RCP unit vectors are defined as |𝐿⟩ = (1, 0)𝑇 , 

|𝑅⟩ = (0, 1)𝑇 . 𝑟𝑙𝑙, 𝑟𝑙𝑟 , 𝑟𝑟𝑙, 𝑟𝑟𝑟  are reflection coefficients of the resonance. The off-

diagonal elements of matrix S  include additional geometric phase factors 𝑒±𝑖2𝜃 , 

known as the Pancharatnam-Berry (PB) phase. PB phase arises due to the coupling 

between the spin of light and the coordinate frame rotations in momentum space, 

revealing the extrinsic spin-orbit interaction (SOI) of light induced by mode resonances.  

When the incidence is LCP, the output can be determined using the reflection 

matrix S as: 

 |𝐸𝑜𝑢𝑡⟩ = 𝑟𝑟𝑙𝑒
−𝑖2𝜃⟨𝐿|𝐸𝑖𝑛⟩|𝑅⟩ + 𝑟𝑙𝑙⟨𝐿|𝐸𝑖𝑛⟩|𝐿⟩. (S13) 

In Equation S13, 𝑟𝑟𝑙𝑒
−𝑖2𝜃⟨𝐿|𝐸𝑖𝑛⟩|𝑅⟩  is the cross-polarization part, and the 

reflection phase can be deduced as: 



 𝜑𝑙𝑟(𝒌||) = 𝑎𝑛𝑔𝑙𝑒(𝑟𝑟𝑙) − 2𝜃 (S14) 

We can now identify the cross-polarization phase (the first term) and PB phase 

(the second term) in Equation S14, as previously discussed for the reflection matrix S 

(Equation S12). For the Γ-BIC, the SOPs remain the same along the Γ-X direction, by 

using Equation S8 and S12, the cross-polarized (RCP) phase gradients under incidence 

along the Γ-X direction can be written as: 

 
𝜕𝜑𝑙𝑟(𝒌||)

𝜕𝒌
=

𝜕𝜑𝑙𝑟(𝒌||)

𝜕𝑘𝑥
𝑥̂ +

𝜕𝜑𝑙𝑟(𝒌||)

𝜕𝑘𝑦
𝑦̂ =

2𝛼𝑣𝑔𝛾

4𝛾2+(|𝒌|||−𝑘0)
2 𝒙̂ −  

2𝜕𝜃

𝜕𝑘𝑦
𝒚̂ (S15) 

As mentioned in the main text, the momentum space and the spatial space form a 

pair of reciprocal spaces. Spatial beam shifts can be realized through the phase gradient 

constructed in the momentum space. Specifically, this can be expressed as: 

 𝑟̂ = 𝑖
𝜕

𝜕𝒌
, 𝑹 = −

𝜕𝜑(𝒌||)

𝜕𝒌
,  

 𝑹𝑅𝐶𝑃 =  𝐗 + 𝐘 = 
2𝛼𝑣𝑔𝛾

4𝛾2+(|𝒌|||−𝑘0)
2 𝒙̂ +  

2𝜕𝜃(𝒌||)

𝜕𝑘𝑦
𝒚̂  (S16) 

Hence, the beam shifts in the Y-direction are determined by PB phase gradients 

and the spin direction of the incident light. As shown in Fig. S1, when the structure (a 

= 1100 nm, D = 760 nm, t = 200 nm) is illuminated with an LCP incidence (consist of 

two orthogonal Gaussian beams with a phase difference of 90° at the center of the slab, 

the incidence is near normal for better exciting the BIC modes, and the divergence angle 

is 1.3°), and the refractive index of the structure is set to be 2 (Fig. S1a) and 2.4 (Fig. 

S1b), modes similar to mode 1 and mode 2 mentioned in the main text will be excited 

(will be referred to as mode 1 and mode 2 in this part), respectively. The beam shifts of 

the cross-polarized (RCP) reflected light for mode 1 are -12.63 μm and 5.85 μm in X 

and Y-direction (Fig. S1a), respectively; the beam shifts of RCP reflected light for mode 

2 are 8.65 μm and -5.46 μm in X and Y-direction (Fig. S1a), respectively.  

When the structure is illuminated with an RCP incidence under the same condition, 

the cross-polarized (LCP) reflected light is symmetrical to the previous result about the 

X-axis (mode 1: x = -12.64 μm, y = -5.86 μm; mode 2: x = 8.65 μm, y = 5.46 μm). The 

cross-polarization phase gradient contributes to beam shifts in the X-direction, which 

is determined by group velocity factor 𝛼𝑣𝑔
. The value of 𝛼𝑣𝑔

 can be directly obtained 

from the band structure. 



 

Figure S1. Influence of incident spin direction. The reflective intensity distribution 

with incidence of LCP (a, b) or RCP (c, d). The value of beam shifts is a: x = -12.63 

μm, y = 5.85 μm; b: x = 8.65 μm, y = -5.46 μm; c: x = -12.64 μm, y = -8.56 μm; d: x = 

8.65 μm, y = 5.46 μm.  

 



Section 2. The refractive index of Sb2Se3 

In main text discussing phase change materials, we demonstrate the feasibility of 

our design by employing a two-layer structure instead of a single-layer structure. This 

is because the inherent losses of PCMs will significantly impact the characteristics of 

our device. 

Therefore, we refer to Sb2Se3, which exhibits relatively low ohmic loss in the near-

infrared range compared to many other phase change materials. The refractive index of 

Sb2Se3 was measured using a dual rotating-compensator Mueller matrix ellipsometer, 

and the result is shown in Fig. S2. The real part of the refractive index of Sb2Se3 in 

amorphous phase and crystalline phase is represented by red dotted line and red solid 

line, respectively. These values correspond to the main Y-axis on the left (in red). The 

imaginary part of the refractive index of Sb2Se3 in amorphous phase and crystalline 

phase is represented by blue dotted line and blue solid line, respectively. These values 

correspond to the secondary Y-axis on the right (in blue). 
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Figure S2. The measured refractive index of Sb2Se3 in both the amorphous and 

crystalline states. The ohmic loss is relatively low in the near-infrared range. 

 



Section 3. The effect of wavelength changing on beam shifts. 

The process of slightly tuning the refractive index of electro-optical materials can 

be understood as adjusting the position of the band structure relative to the incident 

wavelength. Conversely, a similar effect can be achieved by directly varying the 

incident wavelength. Although changing the wavelength of incident light does not 

qualify as dynamically control under the definition, it provides a practical method for 

scanning across different angular ranges by selecting appropriate incident wavelengths. 

Here, we analyze mode 4 as described in the main text (a = 1400 nm, D = 880 nm, t = 

300 nm, n = 3.3).  

 

 

Figure S3. The effect of incident wavelength. a, the beam shift varies as the 

incident wavelength changes in the range from 1710 nm to 1730 nm. c, the beam shift 

angle varies as the incident wavelength changes in the range from 1710 nm to 1730 nm. 

b, d, the intensity distribution at the wavelength of 1710 (b) and 1730 nm (d), 

respectively.  

From the Fig. S3a, we observe that the beam shift in the X-direction exhibits 

greater variation compared to that in Y-direction, which is consistent with the results 

presented in the main text. The shift angle scans from 31.74° (at an incident wavelength 



of 1710 nm) to 80.83° (at an incident wavelength of 1730 nm) as shown in Fig. S3c. 

Furthermore, the intensity distribution at an incident wavelength of 1710 nm is 

primarily concentrated in the first quadrant (Fig. S3b), while at an incident wavelength 

of 1730 nm, the intensity distribution shifts toward the Y-axis (Fig. S3d). 

Therefore, by selecting an appropriate incident wavelength and considering the 

effect of refractive index changes on beam shifts, the beam shifts can be adjusted more 

flexibly to meet specific design requirements. As shown in Fig. S4, the refractive index 

range that is sensitive to beam shift angle variation will shift toward a higher values as 

the incident wavelength increase from 1720 nm to 1730 nm. Selecting a suitable 

incident wavelength allows for a greater shift angle scanning range while avoiding the 

influence of other modes. It is observed that at an incident wavelength of 1720 nm and 

a refractive index of 3.34, the intensity distribution becomes disordered due to 

interference from another Γ-BIC mode. This interference explains why the shift angle 

is notably low under these conditions. 
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Figure S4. The effect of incident wavelength and refractive index. The shift angle 

at the incident wavelength of 1720 nm (black), 1725 nm (red) and 1730 nm (blue). 

 



Section 4. The error caused by using different simulation methods. 

In the main text, we applied the finite element method (FEM) to simulate the 

eigenmodes of a structure with infinite periodicity, while the finite-difference time-

domain (FDTD) method was used to simulate the scattering characteristic of a real 

device with finite periodicity under specific incidence conditions. However, the use of 

these two different methods, along with their inherent inaccuracies, introduces errors 

that affect their output wavelength values. These errors cause the band structure to 

broaden and shift relative to the wavelength position. As shown in Fig. S5a-b. 

Compared to the result of band structure obtained by calculating the eigen mode using 

FEM (Fig. S5a), the band structure obtained by emission spectrum using FDTD method 

shifts relative to wavelength towards higher value. The impact of these discrepancies 

on beam shifts is more evident in Fig. S5c-d. The direction of beam shift at the 

wavelength of 1428 nm (purple line) calculated by FEM (Fig. S5c) is opposite to that 

obtained by using FDTD method (Fig. S5d). 

 

 



Figure S5. Comparison of simulation results using FEM and FDTD methods. a. 

The band structure of mode 2 calculated by FEM, represented by the black line. b. The 

band structure of mode 2 calculated by FDTD method, showing a shift relative to 

wavelength position compared to the FEM results. c. Beam shifts at different incident 

wavelength, the reflected light is approximately located on the Y-axis at an incident 

wavelength of 1428 nm. d. The reflected light is clearly located in the fourth quadrant 

at the same incident wavelength of 1428 nm. 


